Association Between Exercise-induced Hyperthermia and Intestinal Permeability a Systematic Review
Intestinal harm following brusk-duration exercise at the same relative intensity is similar in temperate and hot environments
Abstract
Increasing temperature and do disrupt tight junctions of the gastrointestinal tract although the contribution of environmental temperature to abdominal damage when exercising is unknown. This study investigated the effect of 2 dissimilar environmental temperatures on intestinal damage when exercising at the same relative intensity. Twelve men (mean ± SD; body mass, 81.98 ± 7.95 kg; height, 182.half dozen ± 7.4 cm) completed randomised cycling trials (45 min, 70% maximal oxygen uptake) in thirty °C/twoscore% relative humidity (RH) and xx °C/xl%RH. A subset of participants (due north = 5) also completed a seated passive trial (30 °C/forty%RH). Rectal temperature and thermal sensation (TSS) were recorded during each trial and venous blood samples collected at pre- and mail service-trial for the assay of intestinal fat acrid-binding protein (I-FABP) level every bit a mark of intestinal damage. Oxygen uptake was similar between 30 °C and 20 °C exercise trials, as intended (p = 0.94). I-FABP increased after exercise at 30 °C (pre-practise: 585 ± 188 pg·mL−ane; postexercise: 954 ± 411 pg·mL−ane) and twenty °C (pre-exercise: 571 ± 175 pg·mL−one; postexercise: 852 ± 317 pg·mL−one) (p < 0.0001) but the magnitude of damage was like between temperatures (p = 0.58). There was no significant increase in I-FABP concentration following passive heat exposure (p = 0.59). Rectal temperature increased during exercise trials (p < 0.001), but not the passive trial (p = 0.084). TSS increased more when exercising in 30 °C compared with twenty °C (p < 0.001). At that place was an increase in TSS during the passive rut trial (p = 0.03). Abdominal damage, as measured by I-FABP, following exercise in the oestrus was like to when exercising in a cooler environs at the same relative intensity. Passive heat exposure did not increment I-FABP. Information technology is suggested that when exercising in conditions of compensable heat stress, the increase in intestinal damage is predominantly attributable to the do component, rather than environmental conditions.
Résumé
Fifty'augmentation de la température et de la quantité d'exercice perturbent les jonctions serrées du tractus gastro-intestinal; toutefois, on ne connait pas la part de la température environnementale dans les dommages intestinaux au cours d'un exercice physique. Cette étude examine fifty'effet de deux températures environnementales différentes sur les dommages intestinaux au cours d'un exercice physique réalisé à la même intensité relative. Douze hommes (moyenne ± é-t; masse corporelle : 81,98 ± 7,95 kg, hauteur : 182,6 ± seven,4 cm) participent à des essais cyclistes randomisés (45 min, 70 % de la consommation maximale d'oxygène) dans deux conditions climatiques : thirty °C, forty % humidité relative (Hr) et xx °C, 40 % 60 minutes. Un sous-échantillon de 5 individus participe à un essai passif en position assise : 30 °C, 40 % 60 minutes. Durant chaque essai, on enregistre la température rectale et la sensation thermique (« TSS ») et on prélève des échantillons de sang veineux avant et après chaque essai cascade la mesure de la concentration de la protéine intestinale de liaison des acides gras (« I-FABP »), un marqueur des dommages intestinaux. Comme prévu, la consommation d'oxygène au cours des essais kinésiques à thirty °C et 20 °C est similaire (p = 0,94). La concentration d'I-FABP est plus élevée après l'exercice à xxx °C (préexercice: 585 ± 188 pg·mL−1, postexercise : 954 ± 411 pg·mL−1) et à 20 °C (préexercice: 571 ± 175 pg·mL−1, postexercice: 852 ± 317 pg·mL−1; p < 0,0001), mais l'ampleur des dommages est similaire dans les deux conditions thermiques (p = 0,58). On ne notation pas d'augmentation significative de l'I-FABP (p = 0,59) après l'exposition passive à la chaleur. La température rectale south'élève au cours des essais kinésiques (p < 0,001), mais pas au cours de l'essai passif (p = 0,084). TSS s'accroît plus au cours de l'exercice physique à thirty °C comparativement à 20 °C (p < 0,001). On observe une augmentation de TSS durant l'essai passif dans la chaleur (p = 0,03). Les dommages intestinaux mesurés par fifty'I-FABP à la suite des exercices dans les deux conditions thermiques sont similaires à la même intensité relative. L'exposition passive à la chaleur n'engendre pas d'augmentation d'I-FABP. Au cours d'united nations exercice physique dans des weather de stress thermique compensable, l'accroissement des dommages intestinaux serait surtout attribuable à la composante kinésique plutôt qu'à la composante environnementale. [Traduit par la Rédaction]
Get full access to this article.
View all available buy options and go total access to this article.
References
ANSI. 2010. Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE Standard 55-2010. ASHRAE, Atlanta, Ga., United states. p. 11.
Barberio M.D., Elmer D.J., Laird R.H., Lee K.A., Gladden B., and Pascoe D.D. 2015. Systemic LPS and inflammatory response during consecutive days of exercise in heat. Int. J. Sports Med. 36: 262–270.
Borg G.A. 1982. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14: 377–381.
Collins C.W., Shute R.J., Heesch 1000.W.S., and Slivka D.R. 2017. The effect of ecology temperature on exercise-dependent release of brain-derived neurotrophic cistron. Temperature, 4: 305–313.
Costa R.J.S., Snipe R.K.J., Kitic C.M., and Gibson P.R. 2017. Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment. Pharmacol. Ther. 46: 246–265.
de Oliveira E.P. and Burini R.C. 2009. The impact of physical exercise on the gastrointestinal tract. Curr. Opin. Clin. Nutr. Metab. Care, 12: 533–538.
Dill D.B. and Costill D.L. 1974. Adding of per centum changes in volumes of claret, plasma, and red cells in dehydration. J. Appl. Physiol. 37: 247–248.
Dokladny K., Zuhl Yard.N., and Moseley P.L. 2016. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Appl. Physiol. (1985), 120: 692–701.
Enos R.T., Davis J.M., McClellan J.L., and Murphy E.A. 2013. Indomethacin in combination with exercise leads to muscle and brain inflammation in mice. J. Interferon Cytokine Res. 33: 446–451.
Exercise & Sports Science Commonwealth of australia. 2012. Developed Pre-Do Screening Organization. Ascot, Queensland, Australia.
Gil Due south.Grand., Yazaki East., and Evans D.F. 1998. Aetiology of running-related gastrointestinal dysfunction. How far is the finishing line? Sports Med. 26: 365–378.
Groschwitz K.R. and Hogan Due south.P. 2009. Intestinal bulwark function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124: iii–20.
Hales J.R. 1997. Hyperthermia and rut disease. Pathophysiological implications for avoidance and treatment. Ann. N.Y. Acad. Sci. 813: 534–544.
Hall A.H., Leveritt M.D., Ahuja K.D., and Shing C.M. 2013. Coingestion of saccharide and protein during training reduces preparation stress and enhances subsequent exercise functioning. Appl. Physiol. Nutr. Metab. 38(6): 597–604.
Hall D.M., Buettner 1000.R., Matthes R.D., and Gisolfi C.V. 1994. Hyperthermia stimulates nitric oxide formation: Electron paramagnetic resonance detection of No-heme in blood. J. Appl. Physiol. 77: 548–553.
Hall D.One thousand., Baumgardner Thousand.R., Oberley T.D., and Gisolfi C.V. 1999. Splanchnic tissues undergo hypoxic stress during whole trunk hyperthermia. Am. J. Physiol. 276: G1195–G1203.
Hall D.M., Buettner G.R., Oberley 50.Due west., Xu L., Matthes R.D., and Gisolfi C.V. 2001. Mechanisms of circulatory and intestinal bulwark dysfunction during whole body hyperthermia. Am. J. Physiol. 280: H509–H521.
Kanda T., Fujii H., Tani T., Murakami H., Suda T., Sakai Y., et al. 1996. Intestinal fatty acrid-binding protein is a useful diagnostic marking for mesenteric infarction in humans. Gastroenterology, 110: 339–343.
Karhu E., Forsgard R.A., Alanko L., Alfthan H., Pussinen P., Hamalainen Due east., and Korpela R. 2017. Practice and gastrointestinal symptoms: running-induced changes in abdominal permeability and markers of gastrointestinal role in asymptomatic and symptomatic runners. Eur. J. Appl. Physiol. 117: 2519–2526.
Lambert Thousand.P., Lang J., Balderdash A., Pfeifer P.C., Eckerson J., Moore Grand., et al. 2008. Fluid restriction during running increases gi permeability. Int. J. Sports Med. 29: 194–198.
Mallick I.H., Yang W., Winslet M.C., and Seifalian A.K. 2004. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig. Dis. Sci. 49: 1359–1377.
March D.Due south., Marchbank T., Playford R.J., Jones A.W., Thatcher R., and Davison G. 2017. Intestinal fatty acid-binding protein and gut permeability responses to exercise. Eur. J. Appl. Physiol. 117: 931–941.
Maw G.J., Boutcher Southward.H., and Taylor Due north.A. 1993. Ratings of perceived exertion and affect in hot and cool environments. Eur. J. Appl. Physiol. Occup. Physiol. 67: 174–179.
McKenna Z., Berkemeier Q., Naylor A., Kleint A., Gorini F., Ng J., et al. 2017. Bovine colostrum supplementation does not affect plasma i-fabp concentrations following exercise in a hot and humid environment. Eur. J. Appl. Physiol. 117: 2561–2567.
Morrison S.A., Cheung S.S., and Cotter J.D. 2014. Bovine colostrum, grooming status, and gastrointestinal permeability during exercise in the heat: a placebo-controlled double-blind study. Appl. Physiol. Nutr. Metab. 39(9): 1070–1082.
Moses F.1000. 1990. The consequence of exercise on the gastrointestinal tract. Sports Med. 9: 159–172.
Moses F.Grand. 2005. Practice-associated intestinal ischemia. Curr. Sports Med. Rep. four: 91–95.
No G. and Kwak H.B. 2016. Furnishings of ecology temperature on physiological responses during submaximal and maximal exercises in soccer players. Integr. Med. Res. 5: 216–222.
Pals K.L., Chang R.T., Ryan A.J., and Gisolfi C.V. 1997. Effect of running intensity on intestinal permeability. J. Appl. Physiol. 82: 571–576.
Pelsers M.M., Namiot Z., Kisielewski W., Namiot A., Januszkiewicz Thou., Hermens W.T., and Glatz J.F. 2003. Abdominal-type and liver-type fat acrid-binding protein in the intestine. Tissue distribution and clinical utility. Clin. Biochem. 36: 529–535.
Peters H.P., de Leeuw D., Lapham R.C., Bol Due east., Mosterd W.L., and de Vries W.R. 2001. Reproducibility of ultrasound claret flow measurement of the superior mesenteric artery before and afterwards do. Int. J. Sports Med. 22: 245–249.
Phillips Due north.A., Welc S.S., Wallet Southward.G., King Thou.A., and Clanton T.L. 2015. Protection of intestinal injury during rut stroke in mice by interleukin-6 pretreatment. J. Physiol. 593: 739–753.
Philp C.P., Buchheit M., Kitic C.M., Minson C.T., and Fell J.W. 2017. Does short-duration estrus exposure at a matched cardiovascular intensity meliorate intermittent-running performance in a cool environment? Int. J. Sports Physiol. Perform. 12: 812–818.
Pires Due west., Veneroso C.E., Wanner Due south.P., Pacheco D.A.S., Vaz G.C., Amorim F.T., et al. 2017. Association between exercise-induced hyperthermia and intestinal permeability: a systematic review. Sports Med. 47: 1389–1403.
Qamar M.I. and Read A.E. 1987. Effects of practise on mesenteric claret flow in human. Gut, 28: 583–587.
Rowell L.B., Blackmon J.R., Martin R.H., Mazzarella J.A., and Bruce R.A. 1965. Hepatic clearance of indocyanine green in homo under thermal and exercise stresses. J. Appl. Physiol. 20: 384–394.
Sessions J., Bourbeau Yard., Rosinski Yard., Szczygiel T., Nelson R., Sharma Northward., and Zuhl M. 2016. Carbohydrate gel ingestion during running in the heat on markers of gastrointestinal distress. Eur. J. Sport Sci. xvi: 1064–1072.
Shing C.M., Peake J.Thou., Lim C.L., Briskey D., Walsh N.P., Fortes Grand.B., et al. 2014. Effects of probiotics supplementation on gastrointestinal permeability, inflammation and exercise performance in the rut. Eur. J. Appl. Physiol. 114: 93–103.
Snipe, R.M.J., Kitic, C.K., Gibson, P.R., and Costa, R.J.S. 2016. Heat stress during prolonged running results in exacerbated intestinal epithelial injury and gastrointestinal symptoms. Exercise & Sports Science Australia, Melbourne, Australia.
Snipe R.M.J., Khoo A., Kitic C.M., Gibson P.R., and Costa R.J.Due south. 2017. Carbohydrate and protein intake during exertional heat stress ameliorates intestinal epithelial injury and small intestine permeability. Appl. Physiol. Nutr. Metab. 42: 1283–1292.
Snipe R.M.J., Khoo A., Kitic C.Grand., Gibson P.R., and Costa R.J.Due south. 2018a. The impact of exertional-heat stress on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profile. Eur. J. Appl. Physiol. 118: 389–400.
Snipe R.M.J., Khoo A., Kitic C.Chiliad., Gibson P.R., and Costa R.J.S. 2018b. The impact of mild heat stress during prolonged running on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profiles. Int. J. Sports Med. 39: 255–263.
Soares A.D., Costa K.A., Wanner Southward.P., Santos R.Chiliad., Fernandes S.O., Martins F.Due south., et al. 2014. Dietary glutamine prevents the loss of intestinal barrier function and attenuates the increase in cadre body temperature induced by acute heat exposure. Br. J. Nutr. 112: 1601–1610.
Strang S., Van Waes O., Van der, Hoven B., Ali South., Verhofstad Yard., Pickkers P., and Van Lieshout Eastward.1000. 2015. Intestinal fatty acrid binding protein equally a marker for intra-abdominal pressure-related complications in patients admitted to the intensive careunit; written report protocol for a prospective cohort report (I-Fabulous study). Scand. J. Trauma Resusc. Emerg. Med. 23: 6.
Sun D.L., Cen Y.Y., Li S.1000., Li W.M., Lu Q.P., and Xu P.Y. 2016. Accurateness of the serum abdominal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: a meta-analysis. Sci. Rep. 6: 34371.
Szymanski Yard.C., Gillum T.Fifty., Gould L.1000., Morin D.S., and Kuennen M.R. 2018. Short-term dietary curcumin supplementation reduces gastrointestinal barrier harm and physiological strain responses during exertional estrus stress. J. Appl. Physiol. 124: 330–340.
ter Steege R.W., Van der Palen J., and Kolkman J.J. 2008. Prevalence of gastrointestinal complaints in runners competing in a long-altitude run: An internet-based observational study in 1281 subjects. Scand. J. Gastroenterol. 43: 1477–1482.
Timmermans K., Sir O., Kox 1000., Vaneker Thou., de Jong C., Gerretsen J., et al. 2015. Circulating ifabp levels as a marker of intestinal damage in trauma patients. Shock, 43: 117–120.
van Nieuwenhoven Chiliad.A., Brouns F., and Brummer R.J. 2004. Gastrointestinal contour of symptomatic athletes at balance and during concrete practise. Eur. J. Appl. Physiol. 91: 429–434.
van Wijck 1000., Lenaerts K., van Loon L.J., Peters W.H., Buurman Westward.A., and Dejong C.H. 2011. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in good for you men. PLoS ONE, six: e22366.
van Wijck K., Lenaerts K., Grootjans J., Wijnands K.A., Poeze M., van Loon L.J., et al. 2012. Physiology and pathophysiology of splanchnic hypoperfusion and abdominal injury during exercise: Strategies for evaluation and prevention. Am. J. Physiol. Gastrointest. Liver Physiol. 303: G155–G168.
van Wijck Chiliad., Pennings B., van Bijnen A.A., Senden J.One thousand., Buurman W.A., Dejong C.H., et al. 2013. Dietary protein digestion and absorption are impaired during astute postexercise recovery in young men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304: R356–R361.
Wingo J.E. 2015. Exercise intensity prescription during rut stress: a cursory review. Scand. J. Med. Sci. Sports, 25: 90–95.
Information & Authors
Data
Published In
Applied Physiology, Diet, and Metabolism
Volume 43 • Number 12 • December 2018
History
Received: 24 January 2018
Accepted: 25 May 2018
Published online: six June 2018
Copyright
© 2018.
Key Words
- gastrointestinal
- heat stress
- intestinal fatty acid-binding protein (I-FABP)
- practise
- intestinal damage
Mots-clés
- gastro-abdominal
- stress thermique
- protéine intestinale de liaison des acides gras (« I-FABP »)
- exercice physique
- dommage intestinal
Authors
Metrics & Citations
Metrics
Other Metrics
Citations
Cite As
Brodie L. Sheahen, James W. Brutal, Emma Thousand. Zadow, Thomas F. Hartley, and Cecilia One thousand. Kitic. Intestinal damage following short-duration practise at the same relative intensity is similar in temperate and hot environments. Applied Physiology, Nutrition, and Metabolism. 43(12): 1314-1320. https://doi.org/10.1139/apnm-2018-0057
Export Citations
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Merely select your manager software from the list beneath and click Download.
Cited by
one. The influence of exercise intensity and exercise fashion on gastrointestinal impairment
View Options
Get Admission
View options
Full Text
Open Full Text Media
Media
Other
Tables
Source: https://cdnsciencepub.com/doi/abs/10.1139/apnm-2018-0057
0 Response to "Association Between Exercise-induced Hyperthermia and Intestinal Permeability a Systematic Review"
Post a Comment